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The plane problem of the theory of elasticity for an unbounded domain, contain- 

ing N arbitrarily situated rectilinear cuts (cracks), is reduced to a system of N 
singular integral equations relative to functions which characterize the discon- 

tinuity of the displacements along the crack lines. The general solution of the 

integral equations for the case of distantly located cracks in the form of a power 
series with respect to a small parameter, is obtained. The problem of rupture is 
also considered. 

In the plane theory of cracks there exist a series of investigations devoted to 

the study of the interactions between cracks which are ordered in a definite 

manner (colinear [ 1- 31, parallel [4, 53, with a chessboard distribution [6] ). By 
the representation of the complex potentials in the form of Laurent series [7], 
we determine approximately the state of stress of an unbounded plate, weakened 
by a system of arbitrarily oriented cracks, in the case of a linear distribution of 

stresses at infinity. We reduce the plane problem of the theory of elasticity for 
an infinite body, containing arbitrarily situated rectilinear cracks and with an 
arbitrary load, to a system of integral equations ; this will allow to solve a series 
of new problems in the mathematical theory of cracks. 

1, Assume that in an elastic plane, related to a Cartesian system of coordinates XOY, 
there exist N cuts (cracks) of length 2ak (k = 1, 2, . . . , N). The centers Ok of the 
cracks are determined by the coordinates zkO =:= x,,.~ + iy,, = d,,.eibs. At the points 
Ok there are located the origins of local systems of coordinates X@~Y,. The axes 
O~X k coincide with the crack lines and form the angles cck with the axis Ox (Fig. 1). 
The boundaries of the cracks are loaded by the self-balancing forces 



A system of arbitrarily oriented cracks In elastic solids 307 

p,,. (5,;) = NLf - iT,+ = N,- - iT,;9 pkl<‘ak (k L 1, 2, . . ,N) (1.13 

The determination of the state of stress and strain in an infinite plane containing one 

crack 1 zk 1 6 ak, .yk = 0, reduces to solving the singular integral equation [8, 91 

“’ 

s 

g,’ (t) dt 
t -xk = np, (x/L), 1 5,i I G ah. 

-ak 

relative to the function which characterizes the discontinuity of the displacements 

Fig. 1 

u (5, o/, u (x1 0) at the line of the crack (G, x are the elastic constants of the ma- 
terial) 

67, (4 = - +$& {i [v<+ (xk) - zk- (zk)] + I”k+ @k) - uk- (sk)l) 

In terms of the known function g,’ (z) we determine [lo] the combination of the 

stresses Nnk - iT,,t at the line Onxn 
CL 

N,k - iT,k = f 
.k 

s 
kh.’ (q Kltj,. (1, x,) + g,’ V) Lnh. (t, 41 dt 

-‘k 

(n = 1, 2, . . ., N, n =+ k) 

K,, (t, cz) = S,,i (t, x) + s,, (t, x) e2i(ak-an) 

L,&.(t, x) = &,;((t, s) - s:,, e2i (ak-a,) 
s,k (& 2) 

s,,,; (t: x) E l/z [t _ xei(ak-“n) - d,kei(~~-p~+l 

drl,,,&k -L; d,,& - d,e”k 

Considering the expression !V 

- 2’ (~V,,J; - iT,,,.) 
ii=1 

as an additional exterior load, applied to the boundary of the n th crack 1 5, 1 < a,,, 
.!I, -z 0, we obtain a system of N singular integral equations relative to the unknown 
functions glL’ (x,) 
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“?I ,* gn’ (t) czt 

I t-x + 5r 7 k,’ (t) KrLi CL, 4 -t g/i’ CL) klk (6 x)1 a = nP,, (4 
-%a k=l -nk 

lzI<ua, (n-=1, 2, . ., N) (4.2) 

The symbol 2’ means that at the summation the term corresponding to the row index 

is excluded. Making use of the formula for the conversion of Cauchy type integrals [ll]. 
we arrive at a system of Fredholm integral equations of the second kind 

Here 

Thus, the plane problem of the theory of elasticity for an unbounded body with arbit- 
rarily located rectilinear cracks is reduced to the system of singular integral equations 
(1.2), which, in turn, is transformed into the system of Fredholm integral equations of the 
second kind (1.3). We note that the kernels Mnk (t, IC), Rnk (t, X) of the system 

(1.3) can be evaluated in closed form. 
The system (1.2) or (1.3) allows to consider very different cases of distribution of 

cracks. In particular, we can obtain the integral equations of the periodic problem in 

the theory of cracks. If we make the length of one of the cracks tend to infinity, then 
we obtain the description of the state of stress of a semiplane, weakened by a system of 

arbitrarily located cracks. In what follows, we will find the general solution of the sys- 
tern (1.3) in the case when the cracks are situated at a large distance from each other. 
For closely situated or intersecting cracks, Eqs. (1.3) can be solved numerically. 

2, For large distances between the centers of the cracks, the kernels ~11,~ k (r, x:> 7 
and Rllk (t, z) have the expansions 

(2.1) 

Here 

a = max {a,}, d = min {&.}, 

(2.2) 
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a nkPvy b nkpv are constant coefficients 

a nkl1 = - l/2 [e-2i(18nk-ak) + e2i(pnk-a,,)] 

a _ _ l/2 [e-3i(P,k-“k)+ e~(3&-2U,:k)l 
nk22 - 

bnkll = - 1/2 [ez*(Pnk-ak) + e2i(Pnk--CLn) __ &,2i(2P,k-~k-an)] 

b,,k22 = - 1/2 [e3i@nk-ak) + &i(3Pnk-ak-2an) _ 3ei(S3nk-3ak-2a ) 
“I 

a nkZl= e 
--2(3Pnk-2ak--a,) + e3i(P,k-a,) 

a _ _ l/2 [e-4i(b,k-ak) + e2i(2,3,k-:n-0$ 
nk33 - 

b,,,, = &i(3Pnk-2ak-“n) _ 3ei(5p,k-2mk-3an) + e3i(Pnk-Yn) 

(2.3) 
b - nk33 - - ‘/2 [ e4i %kdak) + 3c2i(2Pnk-ak-Gn) _ 4&k (3bnk- 2Jk-an), 

ank32 = 3/2 [e 
--i(4Pnk -3ak-an) + ei(4,+3an-“k)l 

b nk32 = 3 [e 
i(4Pnkm-3ak-a ) ,, _ 2e3i(2Bnk-an-ak) + ,i(4P,k-C”k-3Rn), 

a nk31 = - 
3/2 [e4i@nk-an) + e-3i@@,,k-an-Uk'I 

b nk31 r= - 3/2 [ 3$i(2p11k-%-Gk) _ 4e2i(3Pnk-2zn-ak) + e4i(P,k-(xn)j etc. 

We will seek the solution of the system (1.3) in the form of the series 

g,‘(x) = ; &&:)h” 
p=o 

(2.4) 

Inserting (2.1) and (2.4) into (1.3) and making equal the coefficients of the same powers 
of h , we obtain a system of equations for the determination of gnp’ (2) 

(q+)sfl i 
t" [ank<v&,--i--l(t) + ~nkrv&&+s-l(t)~ dt (p == 2, 3, . ..) 

-zr 

Knowing the functions g,’ (x) , we can determine the state of stress and strain of the 
plane with arbitrarily oriented cuts. However, the obtained solution (2.4) is effective 
only for small values of the parameter h, i.e. in the case when the cracks are situated 
at a large distance from each other. 

3. We consider the problem of the limiting equilibrium [12] of a plate, weakened 
by a system of N arbitrarily oriented cracks. In terms of the known functions g,’ (2,) , 
we find the stress intensity coefficients [13] at the vertices of an arbitrary crack 

x-2 _ ik$ = T ]im 
.T)L- tan i 

@=I, 2, . . ., w (3.1) 
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Here the upper sign corresponds to the right-hand vertex of the crack and the lower sign 

to the left-hand vertex. On the basis of the formulas (2.4), (2.5), (3.1). we write, with 

an accuracy of quantities 0 (h') , the values of the stress intensity coefficients 

:v ., 

(a nkllQh.0 + bltkllQ,iO) t I3 1/G 2’ ” 8 IHO (5 I) (a,lk22Q,il + bnk22Qdl)"ll!i+ 

h-=1 

bnlill (~krll~,.06krll Vi.,)1 + $[ fi2 (i- 1) 

&&&I(& l)(a,,,,Q,, + bnh32&)+ H,(i I) dk ~NnI:33 Qxo+22QS2 + 

b nh‘33 
Where 

(3.3) 

The formulas (3.2) give the solution of the problem for an arbitrary load (1.1). How- 

ever, if concentrated forces are applied to the boundaries of the cracks at the points 

zk = Ek,i.e. when pk (zk) = (Pk - i&) 6 (zk - gk) (where 6 (z) is the delta 
function), then in the formulas (3.2) we have 

For the uniformly distributed load 

Ph (xk) =’ -(Ph - iqk) = --Sk (3.4) 

along the boundaries, we obtain from (3.3) 

Q,,zc+, (lKL=-o, ok,=--$... 

We note that from the relations (3.2) we can obtain the solution of the problem for 
a plate weakened by a periodic system of cracks. In particular, setting in the formulas 
(2.2),(2.3),(3.2),(3.4), ak = a, ak = a, dnkeifiTLk = (n - k) dg,(x,) = g (zk), 
sk = s and letting N tend to infinity, we obtain in the case of a constant load on the 

: cos2 2% + + (1 - cos kc)] +2F (e-iix -e--ix) (+ + f e2ixcos 2x)}}+ 0(h6) 

The conditions of limiting equilibrium around any of the vertices of the cracks are 
written in the form [12] 
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(3.6) 

Here K is the characteristic of the material strength in the propagation of the crack 
and ynf are the initial angles of the crack propagation. 

In the general case, all the vertices of the cracks are under different conditions. We 
will consider that the limiting equilibrium state appears in the plate as soon as fracture 
starts at least at one of the vertices, i. e. the following condition holds 

miii {f, (A& AZ)) = + (n= 1, 2, .( N) (3.7! 

4. As an example we consider the limiting equilibrium of an infinite plate with 
two equal, arbitrarily oriented cracks in the case of a biaxial extension at infinity, i. e. 
for N, m= q, Ngm = p. Setting in the formulas (3.2), (3.3) (2.3) 

N = 2, a1 = (22 = a, Bet = B12 + n = B 

we find the stress intensity coefficients, and in terms of them, the critical value of the 
applied load for which fracture starts at any of the four vertices of the cracks 

Kp'Z 
I& - 31k tg 

T -+ -1 

P,‘, = n l/a co.+ r$/2 + 

.l& - i/t = +$-iik$) (n71,2) 

The magnitude of the fracture load P* (a,, % BY AT 17) 
for a plate with cracks of a given orientation is deter- 

Fig. 2 

p*, 
9 

6!6 

u 

-0.6 

-/.z 

-l.B 

-2.4 

mined by the condition (3.7). 
In Fig. 2 we give the diagram of the dependenceof the quantity 

Fig. 3 
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P** CL q) = min P* (al, a%, P, h, q), o-<al, a?, P<2n (4.1) 

on h (curve I) in the case of a monoaxial extension of the plate at infinity (1110). 

The curve 2 characterizes the similar dependence for a plate with two colinear cracks, 

obtained on the basis of the exact solution [14]. For the values h -+ i, the above con- 
structed solution does not hold ; obviously, in this case the minimal limiting load 

P** - 0. Therefore one can expect that for h > 6,7 the dependence of p.+* on h is 
interpolated by the curve given by the dashed line. From here it follows that the depen- 
dence of P** on h differs little (within the limits of 10%) from the corresponding depen- 

dence for colinear cracks. A similar conclusion holds also for the other values of h. 

In Fig. 3 we give the diagram of the minimum limiting stresses P** (4. l), related 
to the average value of the technical strength of the material with defects of the given 
form [15] for 3\. = 0,5 (curve I). Curve 2 represents the behavior of a plate with an 

isolated crack of reduced length, i. e. the length for which the minimum limiting loads 
for a uniaxial extension of the plate with one and with two cracks are equal. 

The diagrams of the limiting stresses for plates weakened by colinear cracks and by 

one crack of reduced length coincide [14], while the dependence of p** (h, q) on the 
parameter k for small values of q differs little from the corresponding dependence in 
the case of colinear cracks. Therefore we can conclude that the diagram of the limit- 

ing stresses, taking into account the interaction of differently oriented cracks, varies lit- 
tle qualitatively, not only in the case when the cracks are situated at large distances, 

but also when they are closer to each other. 
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The axisymmetric state of stress of a piecewise-homogeneous infinite plate bon- 
ded from parallel layers and weakened by a transverse slit (crack) is considered. 
This problem is interesting in connection with some questions of computing the 
strength of rock strata. An investigation of the problem reduces to the solution 
of an integral equation in a function characterizing the change in the slit shape. 

The singularity of the solution is isolated, permitting a detailed study of the 
stress field including the edges and ends of the slit. Some numerical results are 
presented. 

1. Let us consider the state of stress of a plate rigidly bonded together from strips of 

different elastic characteristics. The layers are assumed elastic, isotropic, and symmetric 

relative to the middle layer in both the elastic and geometric characteristics. The mid- 
dle of the strip is slit perpendicularly to the boundary, and the plate itself is subjected 
to tension along the layers (Fig.1). Let us take the following boundary conditions on the 

Fig. 1 

contour of the slit : 

0, = P Ml TX?/ -0, J: =o, ly I<1 

where p (y) is an even function. 
(I.11 

The quantities referring to the middle layer 
(O), the layers (1) and the semi-infinite plates 
(2) will be denoted by the indices 0. 1. 2, res- 
pectively. Taking account of more general 
boundary conditions, such as addition of layers 
between the medium (1) and (2). is not difficult 
in principle and the form taken for the problem 


